FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Теперь давайте рассмотрим некоторое математическое вычисле­ние, которое является трудновыполнимым на всех классических ком­пьютерах, но предположим, что квантовый компьютер легко может выполнить это вычисление, задействовав интерференцию между, скажем. 10500 вселенными. Чтобы прояснить это, пусть вычисление будет тако­во, что ответ после его получения (в отличие от результата разложения на множители) невозможно будет проверить с помощью легкообрабаты­ваемых вычислений. Процесс программирования квантового компью­тера для получения вычислений такого рода, обработки программы и получения результата составляет доказательство того, что математи­ческое вычисление имеет именно этот частный результат. Но в этом случае не существует способа записать все, что произошло во время процесса доказательства, потому что большая часть этого произошла в других вселенных, и измерение состояния вычисления изменило бы интерференционные свойства и тем самым лишило бы доказательство обоснованности. Таким образом, создание старомодного объекта дока­зательства было бы невозможно; более того, во вселенной, как мы ее знаем, далеко не достаточно материала, чтобы составить такой объ­ект, поскольку в этом доказательстве этапов было бы больше, чем су­ществует атомов в известной вселенной. Этот пример показывает, что из-за возможности квантового вычисления два понятия доказательства не эквивалентны. Интуиция доказательства как объекта не охватыва­ет все способы, с помощью которых можно доказать математическое утверждение в реальности.

И опять мы видим неадекватность традиционного математическо­го метода получения определенности через попытки исключить каж­дый возможный источник неопределенности или ошибки из нашей ин­туиции до тех пор, пока не останется только самоочевидная истина. Именно это и сделал Гедель. Именно это делали Черч, Пост и особенно Тьюринг, когда они пытались интуитивно постичь свои универсальные модели вычисления. Тьюринг надеялся, что его абстрактная бумаж­ная модель настолько проста, настолько открыта и четко определена, что не зависит ни от каких допущений относительно физики, которые можно было бы исказить постижимым образом, и, следовательно, она может стать основой абстрактной теории вычисления, независимой от лежащей в ее основе физики. «Он считал, как однажды выразился Фейнман, что он понял бумагу». Но он ошибался. Реальная, квантово-механическая бумага очень отличается от абстрактного материала, ис­пользуемого машиной Тьюринга. Машина Тьюринга является всецело классической, она не принимает во внимание возможность того, что на бумаге могут быть написаны различные символы в различных все­ленных и что они могут интерферировать друг с другом. Безуслов­но, искать интерференцию между различными состояниями бумажной центы непрактично. Но дело в том, что интуиция Тьюринга, из-за со­держания в ней ложных допущений из классической физики, заставила его удалить те вычислительные свойства его гипотетической машины, которые он намеревался сохранить. Именно поэтому результирующая модель вычисления была неполной.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz