FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Именно такое ошибочное, самоочевидное допущение привело к то­му, что саму геометрию ошибочно классифицировали как раздел мате­матики в течение двух тысячелетий, приблизительно с 300 года до н.э., когда Евклид написал свой труд «Элементы», до девятнадцатого века (а в некоторых словарях и школьных учебниках до сегодняшнего дня). Геометрия Евклида сформировала часть интуиции любого математика. В конечном счете, некоторые математики начали сомневаться в само­очевидности, в частности, одной из аксиом Евклида (так называемой «аксиомы о параллельных»). Сначала они не сомневались в истинности этой аксиомы. Говорят, что великий немецкий математик Карл Фрид­рих Гаусс был первым, кто подверг ее проверке. Аксиома о параллель­ных необходима при доказательстве того, что сумма углов треуголь­ника составляет 180°. Легенда гласит, что в совершенной секретнос­ти (из-за боязни быть осмеянным) Гаусс разместил своих ассистентов с фонарями и теодолитами на вершинах трех холмов, чтобы вблизи измерить вершины самого большого треугольника. Он не обнаружил ни­каких отклонений от предсказаний Евклида, однако теперь мы знаем, что это произошло потому, что его инструменты не обладали достаточ­ной чувствительностью. (С геометрической точки зрения окрестность Земли оказывается довольно пассивным местом). Общая теория отно­сительности Эйнштейна включала новую теорию геометрии, которая противоречила геометрии Евклида и была доказана экспериментально. Сумма углов реального треугольника в действительности не обязатель­но составляет 180°: истинная сумма зависит от гравитационного поля внутри этого треугольника.

Весьма похожая ошибочная классификация была вызвана фунда­ментальной ошибкой относительно самой природы математики, кото­рую математики допускали с античных времен, а именно, что мате­матическое знание более определенно, чем какая-либо другая форма знания. Такая ошибка не оставляет выбора классификации теории до­казательства, кроме как части математики, поскольку математическая теорема не может быть определенной, если теория, подтверждающая метод ее доказательства, сама по себе неопределенна. Но как мы толь­ко что видели, теория доказательства не является разделом математи­ки она является наукой. Доказательства не абстрактны. Не сущест­вует абстрактного доказательство чего-либо, так же, как не сущест­вует абстрактного вычисления чего-либо. Конечно, можно определить класс абстрактных категорий и назвать их «доказательствами», но эти «доказательства» не могут подтвердить математические утверждения, потому что их невозможно увидеть. Они могут убедить кого-либо в ис­тинности высказывания не более, чем абстрактный генератор вирту­альной реальности, который физически не существует, может убедить людей, что они находятся в другой среде, или абстрактный компью­тер может разложить на множители число. Математическая «теория доказательств» не имела бы никакого отношения к тому, какие мате­матические истины можно или нельзя доказать в действительности, точно так же, как теория абстрактного «вычисления» не имеет ника­кого отношения к тому, что математики или кто-то еще могут или не могут вычислить в реальности, по крайней мере, если не су­ществует отдельной эмпирической причины считать, что абстрактные «вычисления» в этой теории похожи на реальные вычисления. Вычис­ления, включая и особые вычисления, квалифицируемые как доказа­тельства, это физические процессы. Теория доказательств говорит о том, как обеспечить, чтобы эти процессы правильно имитировали абстрактные категории, которые они должны имитировать.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz