Предыдущая Следующая
Обратите внимание на то, что и на этом, и на многих других рисунках чаще изображены не береговые линии, а острова и озера — вообще, «сплошным» фигурам явно отдается предпочтение перед контурами. Объясняется это очень просто — мы всего лишь пытались максимально эффективно использовать высокую разрешающую способность нашей графической системы.
Почему к данной кривой нельзя провести касательную? Выберем в качестве неподвижной точки одну из вершин исходного треугольника и проведем прямую до некоторой точки, расположенной на предельной кривой, в направлении по часовой стрелке. По мере того, как выбранная точка на кривой приближается к нашей вершине, соеди-
 няющая их прямая колеблется внутри угла в 30° и совершенно не желает устремляться к какому бы то ни было пределу, который мы могли бы назвать касательной в направлении по часовой стрелке. Касательная в направлении против часовой стрелки также не определена. Точка, к которой нельзя провести касательную, поскольку опущенные из нее хорды колеблются под вполне определенными углами, называется гиперболической точкой. Что касается тех точек, к которым кривая /С стремится асимптотически, то к ним также нельзя провести касательную, но по другой причине.
Рис. 71. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА К. АЛЬТЕРНАТИВНОЕ ПОСТРОЕНИЕ ЭРНЕСТА ЧЕЗАРО (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ £> = 1п4/1пЗ ~ 1,2618)
Альтернативное построение острова Коха предложено в статье Че-заро, посвященной кривым фон Коха [74] — работе настолько замечательной, что всякий раз, открывая журнал, я забываю о том, как долго и упорно я искал эту статью (и как разозлился, обнаружив впоследствии, что все мои труды были напрасны — мне следовало сразу же заглянуть в сборник [75]). Позволю себе привести несколько особенно восхитительных строк в моем вольном переводе. «Бесконечное вложение этой фигуры в самоё себя дает нам некоторое представление о том, что Тен-нисон однажды назвал внутренней бесконечностью — единственный, в сущности, род бесконечности, доступный нашему восприятию Природы. Благодаря такому подобию между целым и частями — вплоть до самых мельчайших, исчезающе малых частей — кривая Коха обретает воистину чудесные свойства. Если бы ей была дарована жизнь, то для того, чтобы убить ее, нам пришлось бы уничтожить всю кривую без остатка, ибо она возрождалась бы вновь и вновь из глубин своих треугольников; то же, впрочем, можно сказать и о жизни во Вселенной вообще». Предыдущая Следующая
|