FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Моя лейбницемания еще более усугубилась, когда я обнаружил, что ее вдохновитель одно время придавал некоторое значение геометрической масштабной инвариантности. В работе «Euclidis тгрсота»1 (см. [296], том II. 1, с. 183-211), представляющей собой попытку конкретизировать евклидовы аксиомы, Лейбниц на с. 185 пишет: «IV (2): У меня имеются самые разнообразные определения прямой. Например, прямая линия есть кривая, каждая часть которой подобна целому; этим свойством обладает лишь прямая, причем не только среди кривых, но и среди множеств.» Сегодня мы можем доказать это утверждение. Далее Лейбниц описывает более ограниченные самоподобные свойства плоскости.

Независимо от Лейбница, та же мысль пришла в 1860 г. в голову Жозефа Дельбёфа (1831-1896), бельгийского мыслителя, чьи взгляды Б.Рассел подвергает беззлобной критике [506]. Дельбёф, переключивший свой энтузиазм любителя с классической литературы на философию геометрии, стал поистине необычной личностью в науке. Однако его «принцип подобия» почти ничего н добавляет к вышеприведенной цитате из Лейбница (о которой он, следует сказать, не знал, когда проводил свои исследования, и на которую он впоследствии сослался — благодаря чему о ней узнал и я — с трогательной смесью великодушия и гордости). Дельбёф подвизался у нас еще и на с. 580 (хотя и в несколько второстепенной роли).

Еще одно упоминание о масштабной инвариантности можно усмотреть (но только если вы достаточно великодушны, чтобы быть щедрыми к богачам) в максимах 64 и 69 «Монадологии» Лейбница, где он утверждает, что мельчайшие частицы мироздания обладают в точности настолько же сложной организацией, что и большие его части.

Лаплас также размышлял о вещах, имеющих отношение к масштаб-

«"Начала" Евклида» (лат., тр.). — Прим. перев.

41 о Исторические очерки

571

ной инвариантности. В пятом издании его «Системы мироздания», опубликованном в 1842 г. и переведенном на английский язык (в четвертом издании 1813 г. этого нет), в главе V книги V имеется следующее замечание (см. [289], том VI): «Одним из замечательных свойств [ньютоновского тяготения] является то, что если размеры всех тел во Вселенной, расстояния между этими телами и скорости их движения пропорционально увеличить или уменьшить, то они станут описывать кривые в точности подобные тем, что они описывают сейчас; т. е. Вселенная, уменьшенная до наименьших вообразимых размеров, явит внешним наблюдателям тот же самый облик. Законы природы, таким образом, позволяют нам наблюдать лишь относительные размеры ... [Далее цитата продолжается в подстраничном примечании] Все старания геометров доказать евклидову аксиому о параллельных прямых остаются по сей день безуспешными ... Понятие ... окружности не несет в себе ничего, что было бы связано с ее абсолютной величиной. Однако если мы уменьшим ее радиус, нам придется уменьшить пропорционально и ее длину, и длины сторон всех вписанных в нее фигур. Эта пропорциональность представляется мне намного более естественной аксиомой, нежели упомянутая аксиома Евклида. Любопытно наблюдать это же свойство в результатах теории всемирного тяготения.»


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz