FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Нет нужды говорить, что я целиком и полностью убежден в том, что учащенные версии упомянутых фигур слабо сходятся к фрактальным пределам. На этом моем убеждении, собственно, и основаны рассуждения в главах 13 и 14. Физики также считают это допущение как нельзя более убедительным, несмотря даже на то, что его полное математическое доказательство, насколько мне известно, имеется только для случая броуновского движения. Исходя из вышесказанного, я склоняюсь

1Из последующего (лат.), т. е. после опыта, на основании опыта. — Прим. перев.

452

Разное о XI

к тому, чтобы рассматривать эти нефрактальные фигуры с предполагаемыми фрактальными пределами как решеточные фракталы. Чуть позже мы поговорим и о других важных примерах решеточных фракталов.

Можно сделать еще одно — связанное с предыдущим, но отличное от него — предположение, которое заключается в том, что реальные задачи, для которых решеточная физика предоставляет удобное упрощение, связаны с теми же (или почти с теми же) фракталами. Это предположение получило поддержку в работе [535] в отношении полимеров (которыми мы также вскоре займемся).

ЛОКАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ / ГЛОБАЛЬНЫЙ

ПОРЯДОК

Решеточной физике мы обязаны одним интереснейшим открытием, которое заслуживает того, чтобы о нем узнал весь мир. Заключается оно в том, что при определенных условиях чисто локальные взаимодействия имеют глобальные последствия. Приведу простой пример: результатом взаимодействий между соседними элементарными спинами является магнит, в удивительных свойствах которого всякий может убедиться сам.

Здесь, полагаю, мы вправе помечтать о том, что когда-нибудь феномены, для представления которых я использовал дробные броуновские фракталы, получат аналогичное объяснение.

ВЫМЫШЛЕННЫЙ ПРИМЕР

Позвольте мне описать некий пример, который фундаментальнейшим образом не согласуется с физическим механизмом упорядочения, однако обладает некоторыми несомненными достоинствами: он прост, и, кроме того, в нем (в качестве примера доказуемого слабого предела) фигурирует наша старая фрактальная приятельница, салфетка Серпинско-го (см. главу 14). В точках с целочисленными координатами разместим спины таким образом, чтобы в четные (нечетные) моменты времени они занимали четные (нечетные) места. Знак каждого спина определяется в соответствии со следующим правилом: спин 5 (£, п) в момент времени I и в позиции п отрицателен, если спины 5 (£ — 1, п-1)и5(< + 1, п + 1) одинаковы, и положителен в противном случае.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz