FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

36 о Фрактальная логика в статистической решеточной физике 451

блужданий, то она ведет себя совсем иначе: на одном этапе случайное блуждание приближается к одному броуновскому движению, на следующем этапе оно подходит еще ближе, но уже к другому броуновскому движению, потом еще ближе — к третьему и так далее ... не в состоянии осесть на каком-то одном месте. Это обстоятельство дает математикам полное право называть процесс сходимости случайного блуждания слабым или слабо определенным. С тем же правом конечно-учащенное случайное блуждание мы можем рассматривать как фрактальную кривую, внутренний порог которой равен шагу решетки. Однако это не тот порог, который знаком нам по предыдущим главам. Тот внутренний порог накладывался a posteriori1 на определенные геометрические построения, которые в теории не предполагают наличия какого бы то ни было порога и которые можно интерполировать до бесконечно малых масштабов, получая при этом фракталы. Случайное же блуждание интерполировать никоим образом нельзя.

ФРАКТАЛЫ В «РЕШЕТОЧНОЙ ФИЗИКЕ»

Предыдущие рассуждения касаются далеко не только броуновского движения. В самом деле, у статистической физики имеются весьма серьезные причины заменять многие из стоящих перед ней реальных задач их аналогами, ограниченными некоторой решеткой. Можно даже, пожалуй, сказать, что почти вся статистическая физика образует некую часть более общей «решеточной физики».

Как я указывал в своих предыдущих эссе (и это было подтверждено многими исследователями), в решеточной физике в изобилии встречаются фракталы и почти фракталы. Первые представляют собой фигуры в пространстве параметров — таковы, например, упоминаемые в пояснении к рис. 125 чертовы лестницы. Вторые — это встречающиеся в реальном мире фигуры, которые не являются фракталами, так как их никоим образом нельзя интерполировать до бесконечно малых масштабов, однако они похожи на фракталы в той степени, в какой фрактальны их свойства в средних и больших масштабах. С замечательным примером такой фигуры мы встречались в главах 13 и 14 при рассмотрении бернуллиевой перколяции.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz