FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Рис. 345. В РОЛИ ХУДОЖНИКА - ОШИБКА В ПРОГРАММЕ,

ОПУС 1

Авторство этой иллюстрации можно частично приписать ошибочному программированию. Ошибку вовремя распознали и исправили (после сохранения результата, разумеется!); конечным результатом вы можете полюбоваться на рис. 424^4-27.

Изменения, явившиеся результатом пустяковой ошибки в критическом месте, далеко превзошли наши наихудшие опасения.

Очевидно, что по замыслу в «правильных» иллюстрациях должен был наличествовать весьма строгий порядок. Здесь этот порядок оказался нарушен, причем никакого другого порядка также не наблюдается.

То, что эта иллюстрация — по крайней мере, на первый взгляд, — вполне может сойти за произведение высокого искусства, явно не случайно. Свои соображения на этот счет я вкратце высказал в [399] и намерен изложить их в полном виде в самом ближайшем будущем.

IX о ДРОБНЫЕ БРОУНОВСКИЕ ФРАКТАЛЫ

27 о СТОКИ РЕК. МАСШТАБНО-ИНВАРИАНТНЫЕ СЕТИ И

ШУМЫ

Переход к дробным броуновским фракталам знаменует собой один из важнейших поворотных пунктов настоящего эссе. До сих пор мы придерживались фракталов, связанных с временными и/или/ пространственными решетками, которые налагали определенные ограничения на свойства инвариантности фракталов, т. е. на допустимые преобразования сдвига и подобия, отображающие данный фрактал на себя.

Такие ограничения противоречат второму доводу в пользу рандомизации фракталов, изложенному в главе 22. Более того, в большинстве занимающих нас случаев они не имеют никакого физического смысла. И вот теперь, в главах 27-35, мы займемся, наконец, фракталами, инвариантности которых и при сдвиге, и при преобразовании подобия остаются ничем не ограниченными.

В этой главе мы рассмотрим обобщенное броуновское движение (обозначив его через Вн (£)), которое в [404] называется дробным броуновским движением (сокращенно, ДБД). В качестве мотивации здесь выступит необходимость отыскания закономерности изменения объемов годового стока рек, а кроме того, упоминаются масштабно-инвариантные сети и шумы («1//-шумы»). Главы 28-30 посвящены исследованию соответствующих поверхностей.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz