FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Средний и нижний рисунки представляют совокупный выигрыш Генри за более продолжительную игру; данные снимаются через каждые 20 бросков.

Увеличивая длину наборов данных и уменьшая длину шага, асимптотически получаем выборку значений броуновской функции из прямой в прямую.

На одной из своих лекций Феллер сообщил, что данные рисунки «нетипичны» и были выбраны среди нескольких других, графики на которых выглядели неправдоподобно разбросанно. Как бы то ни было, бесконечное (так мне казалось) созерцание этих графиков сыграло решающую роль в развитии двух теорий, включенных в настоящее эссе.

О графике в целом. В [342] имеется высказывание в том смысле, что форма всего графика целиком напоминает силуэт горного массива

'Feller, W. An Introduction to Probability Theory and Its Applications, vol. 1. (См. [147], кроме того имеется русский перевод: Феллер, У. Введение в теорию вероятности и ее приложения. В 2 т. — М.: Мир, 1984). — Прим. перев.

или вертикальный разрез земной коры. Пройдя через несколько обобщений, это наблюдение привело в конце концов к нескольким моделям, описанным в главе 28.

Нуль-множество графика. Нуль-множество графика есть множество моментов, когда кошельки Генри и Томаса возвращаются к тому состоянию, в котором они пребывали в момент начала наблюдения. По способу построения графика временные интервалы между нулями взаимно независимы. Однако совершенно очевидно, что положения этих нулей независимыми назвать никак нельзя — они образуют весьма явственные скопления. Например, если рассматривать вторую кривую в том же масштабе, что и первую, то почти каждый нуль предстает в виде целого скопления точек. Имея дело с математическим броуновским движением, эти скопления можно подразделять иерархически до бесконечности.

Когда ко мне обратились за помощью в построении модели распределения ошибок в телефонных линиях, я очень кстати вспомнил о графиках Феллера. Хотя было известно, что ошибки группируются в пакеты (в этом, собственно, и состояла практическая суть возникшей проблемы), я предположил, что интервалы между пакетами могут оказаться взаимно независимыми. Тщательное эмпирическое исследование подтвердило мое предположение и привело к созданию моделей, описанных в главах 8 и 31.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz