FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

СНОВА О ГЕОМЕТРИИ КРОВЕНОСНЫХ СОСУДОВ

Вернемся к кульминационному моменту главы 15, где я заявил, что фрактальные чудовища Лебега -Осгуда составляют самую сущность

17 о Деревья и диаметрический показатель

229

нашей плоти. Допустим, что область ветвления Л (артерии) занимает примерно 3% объема области В (тело), и что область Л подходит бесконечно близко к каждой точке области В. Я утверждаю, что толщина ветвей области Л должна уменьшаться быстрее, чем это происходит в самоподобных деревьях. Теперь, когда мы установили, что в некоторых случаях скорость уменьшения толщины характеризуется показателем Д, мы вполне можем поинтересоваться, определен ли этот показатель для артерий.

Представьте себе, он и в самом деле определен в широком поддиапазоне от 8-го до 30-го разветвления, которые происходят между сердцем и капиллярами; более того, об этом факте известно уже почти столетие. Р.Тома [567], а затем Р.Гроут [178] подвели итоги своих экспериментальных исследований и пришли к значению Д = 2,7. Их оценка была исчерпывающим образом подтверждена Сувой и Такахаси [546].

НАСТОЯЩИЕ ДЕРЕВЬЯ

Налюбовавшись объектами, к которым термин дерево применим только фигурально, мы возвращаемся к тем деревьям, которые изучает ботаника. «Нормальными» в данном случае представляются значения D = 3 и Д = 2, обусловленные аналитическими соображениями. Разумеется, они вряд ли универсальны: при столь поразительном разнообразии ботанических форм наверняка найдутся отклонения, подчас даже более интересные, чем «норма». Равенство Д = 2 имеет любопытное следствие: если поставить рядом почти самоподобное дерево бронхов и дерево-растение, то ветви последнего покажутся чрезвычайно редкими. Сквозь точную модель легкого ничего нельзя разглядеть, тогда как лишенная листвы крона дерева свободно просматривается во всех направлениях.

Причина того, что D и Д принимают целочисленные значения, соответствующие евклидовым размерностям объемных тел и поверхностей, заключается, по мнению д'Арси Томпсона, в том, что «рост дерева управляется простыми физическими законами, которые и определяют величину относительных изменений в объеме и площади». Более конкретное объяснение находим в работе [191]: «Задачу об энергетическом обмене в дереве можно упростить, представив дерево как систему, в которой необходимо оросить наибольшую возможную площадь при наименьшем производимом объеме, обеспечив одновременный отвод поглощенной энергии». Поскольку объемы и площади несоизмеримы между собой в рамках евклидовой геометрии, геометрическая задача об архитектуре деревьев является, по сути своей, фрактальной. Фрактальный характер этой задачи становится еще более очевидным в тех случаях, когда ни U, ни Д не являются целыми числами.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz