Предыдущая Следующая
Так как показатель Д = 3 соответствует предельному случаю бесконечно тонких трубок, его нельзя реализовать в действительности. А жаль, потому что «кора» дерева, построенного из бесконечно тонких разветвлений, продолжающихся до нуля, совершенно заполняет пространство. Этому последнему свойству мы могли бы дать телеологическую интерпретацию ничуть не хуже интерпретации Мюррея: такая структура наилучшим образом отвечает целям химического обмена между возду-
228
Немасштабируемые фракталы о V
хом и кровью, поскольку предоставляет для этого обмена наибольшую поверхность.
Однако реальные бронхи не являются бесконечно тонкими, поэтому мы, в лучшем случае, можем рассчитывать лишь на значение показателей Е и Д, чуть меньшее 3, что вполне согласуется с опытными данными. Это значение подразумевает одинаковую степень несовершенства во всех точках ветвления — однако такой результат может быть получен и как побочное следствие самоподобия с остатком и не нуждается в особом рассмотрении.
Размерность. Ветви нашего дерева образуют стандартное множество: его размерность и в топологическом, и во фрактальном смысле равна Е. Если оболочка каждой ветви является гладкой, то размерность всей оболочки равна показателю Д.
АЛЬВЕОЛЫ - ВНУТРЕННИЙ ПОРОГ
Как обычно, процесс интерполяции не достигает бесконечно тонких бронхов, прерываясь при некотором пороге. Это происходит после пятнадцатого разветвления, а сам порог имеет ступенчатую структуру, которую я нахожу геометрически безупречной.
Основное замечание таково: хотя бесконечное самоподобное разветвление заполнило бы в конце концов все доступное пространство, процесс идет достаточно медленно, так что после первых пятнадцати этапов разветвления оказывается заполненной только малая часть объема легкого. Для того, чтобы заполнить оставшееся пространство за малое число этапов, следует сделать трубы значительно толще, чем предполагает самоподобная экстраполяция. В самом деле, из слов Вайбеля ([585], с. 123-124) можно заключить, что на этапах после пятнадцатого диаметр трубок больше не уменьшается (т. е. показатель Д перестает быть определенным). Длина трубок также становится больше, чем можно было ожидать, исходя из соображений подобия, причем предельный коэффициент равен 2. На рис. 237 видно, что самоподобные ветви прорастают примерно на половину ближайшего доступного пустого пространства и, следовательно, коэффициент 2 выглядит в высшей степени логично. Кроме того, последнее обстоятельство еще раз показывает, что программа роста легких обусловлена исключительно свойствами пространства и не нуждается в каком-либо дополнительном кодировании. Предыдущая Следующая
|