FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Между этими крайностями существует еще один весьма интересный класс кривых Пеано. Ниже представлен примерный генератор одной такой кривой вместе с результатом следующего этапа построения:

184

Масштабно-инвариантные фракталы о IV

Теперь мы готовы приручить и этот класс кривых Пеано. На рисунке видно, что каждая точка самокасания «заузливает» открытый предкла-стер, который затем может обзавестись ветвями и точками самокасания, потерять при «разузливании» некоторые части самого себя и, в конце концов, превратиться в тонкую и в высшей степени разветвленную кривую, определяющую контактный кластер. Согласно нашему определению, данному в предыдущих разделах, диаметр кластера Л остается постоянным с момента его рождения и приблизительно равен длине стороны «породившего» кластер квадрата. Его распределение подчиняется уже известному нам соотношению №(Л > А) ос А~2.

Заметим мимоходом, что в отличие от коховых контактных кластеров, которые являются пределами рекурсивно построенных кривых, данные кластеры представляют собой пределы (в своем роде) открытых компонентов дополнения кривой.

КЛАСТЕРЫ В БЕРНУЛЛИЕВОЙ ПЕРКОЛЯЦИИ

Какой бы метод ни использовался при генерации фрактальных контактных кластеров с размерностями В = £ и Вс < I), они представляют собой геометрическую модель, в которой до недавних пор весьма нуждались физики для разрешения одной очень важной проблемы — бернуллиевой перколяции сквозь решетки. Дж. М. Хаммерсли, сформулировавший и первым исследовавший эту проблему, не употреблял в данном контексте имени Бернулли, однако из-за фрактальной перколяции, с которой мы встретимся в главе 23, нам придется здесь пользоваться полным термином. (Этот термин был также принят в [530], причем независимо от меня.)

Литература. Всем желающим рекомендую следующие обзорные материалы по бернуллиевой перколяции: [520], [112] (особенно хороша глава, написанная Дж. У. Эссамом), [266], [98], [536] и [134].

Определения. Понятие перколяции включает в себя некоторые элементы из теории вероятности, поэтому, если быть до конца последовательными, нам не следовало бы обсуждать его на данном этапе. Однако некоторая толика непоследовательности приносит порой неплохие результаты. Простейшей задачей о перколяции для случая Е = 2 является перколяция по связям на квадратной решетке. Для упрощения картины представим себе большую квадратную решетку, составленную из двух видов стержней: одни сделаны из изолирующего винила, другие — из электропроводящей меди. Такая решетка может считаться решеткой Бернулли, если каждый стержень выбран совершенно случайно, независимо от других стержней, причем вероятность выбора проводящего стержня равна р. Наибольшие скопления связанных между собой


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz