Предыдущая Следующая
где Е ~ 3 значительно больше ожидаемого значения 2. Измерения длины главной реки бассейна (см. [186]) показывают, что
(площадь)1/2 ос (длина)1/15,
где В определенно больше ожидаемого значения 1. В ранних исследованиях этот последний результат объяснялся тем, что речные бассейны не самоподобны — большие бассейны имеют вытянутую форму, а маленькие несколько сплюснуты. К сожалению, такая интерпретация не согласуется с экспериментальными данными.
Ниже приведено мое объяснение этих и других похожих наблюдений с более убедительных позиций, и моим инструментом будет новое — фрактальное — соотношение между длиной, площадью и объемом.
ФРАКТАЛЬНОЕ СООТНОШЕНИЕ МЕЖДУ ДЛИНОЙ И
ПЛОЩАДЬЮ
Для большей наглядности рассмотрим совокупность геометрически подобных островов с фрактальными береговыми линиями размерности Е > 1. Стандартное отношение (длина) / (площадь)1/2 в этом контексте стремится к бесконечности, но я намерен показать, что оно имеет достойный фрактальный аналог, вполне пригодный для каких угодно
162
Масштабно-инвариантные фракталы о IV
практических целей. Определим длину побережья, измеренную с шагом длины С, как (С-дшшу), а площадь острова, измеренную в единицах С2 — как (С-площадь). Учитывая, что зависимость (С-длины) от С нестандартна, в отличие от стандартной зависимости (С-площади) от С, мы можем записать следующее обобщенное отношение:
(С-длина)1/в /(С-площадь)1'2.
Я утверждаю, что значение этого отношения одинаково для любого из наших самоподобных островов.
В результате мы имеем два различных способа оценки линейной протяженности каждого острова в единицах С: стандартное выражение (С-площадь)1/2 и нестандартное (С-длина)1/15.
Характерная особенность данного подхода заключается в том, что при смене длины шага с С на С мы получим другое отношение альтернативных линейных протяженностей:
(С-длина)1/1?/(С'-площадь)1/2,
которое отличается от исходного на коэффициент (С/С)1/0-1.
Что касается отношения линейных протяженностей, то для каждого семейства взаимно подобных фигур оно имеет свое значение, независимо от того, фрактальные это фигуры или стандартные. Следовательно, это отношение представляет в количественном виде лишь один аспект формы фигуры. Предыдущая Следующая
|