FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

IV о МАСШТАБНО-ИНВАРИАНТНЫЕ ФРАКТАЛЫ

12 о СООТНОШЕНИЯ МЕЖДУ ДЛИНОЙ, ПЛОЩАДЬЮ И ОБЪЕМОМ

В главах 12 и 13 мы подробно рассмотрим свойства фрактальной размерности на примере многочисленных «мини-прецедентов» различной важности и возрастающей сложности, а в главе 14 покажем, что фрактальная геометрия непременно включает в себя различные концепции за пределами фрактальной размерности.

В настоящей главе мы опишем и применим к различным конкретным случаям фрактальные аналоги, которые я разработал специально для определенных стандартных выводов евклидовой геометрии. Их можно рассматривать как параллельные фрактальным отношениям вида М (Д) ос К°, полученным в главах 6, 8 и 9.

СТАНДАРТНЫЙ АНАЛИЗ РАЗМЕРНОСТЕЙ

Из того, что длина окружности радиуса Д равна 27гД, а площадь диска, ограниченного этой окружностью, составляет 7гД2, следует, что

(длина) = 27Г1/2 (площадь)1/2.

Соответствующее соотношение для квадрата имеет вид

(длина) = 4 (площадь)1/2.

Вообще в любом семействе плоских фигур, геометрически подобных, но имеющих различные линейные размеры, отношение (длина)/(площадь)1/2 представляет собой число, полностью определяемое общей для семейства формой.

12 о Соотношения между длиной, площадью и объемом

161

Пространство (Е = 3) предоставляет нам новые альтернативные способы оценки линейной протяженности фигуры с помощью (длины), (площади)1/2 и (объема)1/3, причем отношение между любыми двумя из этих трех величин является параметром фигуры, независимым от единиц измерения.

Эквивалентность различных линейных протяженностей во многих случаях оказывается очень полезной. А ее расширение (включающее время и массу) лежит в основе мощной методики, известной физикам как «анализ размерностей». (Желающим подробнее ознакомиться с основными его особенностями рекомендую прочесть [37].)

ПАРАДОКСАЛЬНЫЕ РАЗМЕРНОСТИ

Однако нам известно множество примеров (и их количество неуклонно растет), демонстрирующих, к нашему вящему разочарованию, полное отсутствие эквивалентности между альтернативными линейными протяженностями. Например, мозг млекопитающего характеризуется соотношением

(объем)1/3 ос (площадь)1/15,


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz