FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Допустим, что мы намеренно модифицируем программу, передаю­щую геометрию Евклида, так, что генератор виртуальной реальности по-прежнему будет передавать круги достаточно хорошо, но менее, чем совершенно. Разве мы не смогли бы сделать какой-либо вывод о совер­шенных кругах, ощущая эту несовершенную передачу? Это полностью зависело бы от того, знали бы мы, в каких отношениях была изменена программа или нет. Если бы мы это знали, мы могли бы с определен­ностью решить (за исключением грубых ошибок и т.д.), какие аспекты ощущений, полученных нами внутри машины, представляли совершен­ные круги точно, а какие неточно. И в этом случае знание, которое мы приобрели там, было бы так же надежно, как и любое знание, которое мы приобрели бы, используя правильную программу.

Представляя круги, мы осуществляем передачу в виртуальной ре­альности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.

Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не пере­крывая друг друга. Это впечатление при подобных обстоятельствах бы­ло бы эквивалентно точному доказательству возможности такой ситу­ации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид «практического» взаимодействия с совершенными форма­ми не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической фор­ме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной ре­альности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.

Как же мы можем ее проверить? Мы доказываем ее. Традицион­но доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физичес­ки эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Напри­мер, когда при надлежащих обстоятельствах мы наблюдаем символы «rАВС=rDEF» (т. е. «треугольник АВС конгруэнтен треугольнику DEF»), мы делаем вывод, что все треугольники из какого-то определен­ного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. «Надлежащие обстоятельства», которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некото­рые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz