FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Точно так же как солипсизм начинается с мотивации упрощения пугающе разнообразного и неопределенного мира, но при серьезном к нему отношении оказывается реализмом в сочетании с нескольки­ми ненужными усложнениями, так и интуиционизм оканчивается тем, что становится одной из самых контринтуитивных доктрин, которые когда-либо всерьез пропагандировали.

Дэвид Гильберт предложил гораздо более разумный хотя, в ко­нечном счете, и обреченный план «раз и навсегда ввести убежден­ность в математических методах». План Гильберта основывался на идее согласованности. Он надеялся составить полный набор современных правил вывода математических доказательств с определенными свой­ствами. Количество таких правил должно было быть конечным. Они Должны были быть применимы напрямую, так чтобы определить, удов­летворяет ли им какое-то предложенное доказательство, не составляло бы труда и не вызывало противоречий. Желательно, чтобы эти прави­ла были интуитивно самоочевидными, но это не было первостепенным требованием для прагматичного Гильберта. Он был бы удовлетворен, если бы правила лишь умеренно соответствовали интуиции при усло­вии, что он мог бы быть уверен в их самосогласованности. То есть, если правила определили данное доказательство как обоснованное, он хотел быть уверен, что они никогда не определят как обоснованное любое другое доказательство с противоположным выводом. Как он мог быть Уверен в этом? На этот раз согласованность должна была быть дока­зана с помощью метода доказательства, который сам придерживался тех же правил вывода. Таким образом, Гильберт надеялся восстановить завершенность и определенность Аристотеля. Он также надеялся, что с помощью этих правил будет, в принципе, доказуемо любое истин­ное математическое утверждение и не будет доказуемо любое ложное утверждение. В 1900 году в ознаменование начала века Гильберт опуб­ликовал список задач, которые, как он надеялся, математики смогут решить в двадцатом веке. Десятая задача заключалась в нахождении набора правил вывода с вышеуказанными свойствами и доказательстве их состоятельности в соответствии с их собственными нормами.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz