FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Фрактальная размерность. Сумма ширины всех ступеней чертовой лестницы равна сумме высот всех этих ступеней — каждая из сумм равна 1. Следовательно, чертова лестница имеет совершенно определенную длину, равную 2. Кривая конечной длины называется спрямляемой, а ее размерность О равна 1. Из этого примера хорошо видно, что размерность I? = 1 вполне совместима с наличием бесконечного множества особых точек — при условии, что они достаточно редко разбросаны.

< Кое-кому, возможно, захочется назвать представляемую вашему вниманию кривую фрактальной, однако для этого нам придется пойти на менее строгое определение фракталов, которое бы наряду с размерностью И основывалось еще на каких-то других понятиях. ►

Сингулярные функции. Канторова лестница представляет собой неубывающую и непостоянную сингулярную функцию — сингулярную в том смысле, что она непрерывна, но не дифференцируема. Ее производная обращается в нуль почти везде, к тому же она ухитряется непрерывно изменяться на множестве, длина — т. е. линейная мера — которого стремится к нулю.

Любая неубывающая функция может быть представлена в виде суммы некоторой сингулярной функции, некоторой функции, состоящей из дискретных скачков, и некоторой дифференцируемой функции. Два последних слагаемых являются классикой в математике и широко используются в физике. Сингулярную же составляющую большинство физиков считает абсолютно бесполезной патологией. Последнее мнение является абсолютно безосновательной чепухой — это заявление можно считать лейтмотивом настоящего эссе.

Чертовы лестницы в статистической физике. Публикация этого рисунка в эссе 1977 г. привлекла к чертовым лестницам внимание физиков и послужила стимулом для многочисленных исследований. Все чаще мне встречаются в книгах и статьях графики, напоминающие «занавес» на рис. 121 или занавес Фату на рис. 273. В этой связи рекомендую заглянуть в [9], где разрозненные — хотя и весьма важные — ранние исследования (например, [11], [218]) объединены с новыми разработками в данной области.

III о ГАЛАКТИКИ И ВИХРИ

9 о ФРАКТАЛЬНЫЙ ВЗГЛЯД НА СКОПЛЕНИЯ ГАЛАКТИК

В главах 6 и 7, призвав на помощь геоморфологию, мы ввели кривые Коха и Пеано, однако объекты наиболее значительных приложений теории фракталов находятся в несколько иных областях. Неспешно подбираясь к основным течениям в науке, мы рассмотрим в этой главе (и в двух последующих) два вопроса исключительной древности, важности и сложности.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz