FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Знаменитый греческий парадокс. Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли. ■

Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ £> = 1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ £> ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ

Функция Кантора описывает распределение массы вдоль канторова гребня, показанной на рис. 120. Многие называют график этой функции чертовой лестницей — она и впрямь ведет себя весьма странно, чтобы не сказать больше. Условимся, что и длина, и масса гребня равны 1; кроме того, каждой точке абсциссы Д поставим в соответствие массу М (Д), содержащуюся между 0 и Д. Поскольку в паузах никакой массы нет, функция М (Д) на этих интервалах остается постоянной. Учитывая, что створаживание никоим образом не влияет на общую массу гребня, можно заключить, что функция М (Д) должна возрастать хоть где-нибудь между точкой с координатами (0, 0) и точкой с координатами (1, 1). Она и возрастает, только происходит это на бесконечно большом числе бесконечно малых и группирующихся в очень тесные скопления участков, соответствующих полученным нами пластинам гребня. Подробнее о странных свойствах функции Кантора можно прочесть в работе [216].

Регуляризующие отображения. Чертова лестница может похвастаться одним выдающимся свойством: с ее помощью можно отобразить вопиющую неоднородность канторова гребня в нечто пристойно

однородное и равномерное. Взяв два различных интервала одинаковой длины на вертикальной оси графика обратной канторовой лестницы, мы обнаружим, что масса двух соответствующих наборов пластин одинакова — хотя на вид они, как правило, сильно отличаются.

Поскольку самым буйным цветом наука цветет именно на почве однородности, такие регуляризующие преобразования часто способны преодолеть преграду между фрактальной иррегулярностью и математическим анализом.

Фрактальная однородность. Распределение масс в канторовом гребне удобно полагать фрактально однородным.

Канторово движение. Как и в случае рассматриваемой в виде движения кривой Коха или движения Пеано, иногда удобно интерпретировать ординату М (К) как время. Тогда обратная функция К (М) будет определять положение точки при канторовом движении в момент времени I. Движение это в высшей степени дискретно. В главах 31 и 31 мы рассмотрим его линейные и пространственные обобщения.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz