FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

КРИВЫЕ ПЕАНО В РОЛИ ЧУДОВИЩ

«Все шатается и рассыпается! Очень трудно передать словами тот эффект, который произвели результаты [Джузеппе] Пеано на все математическое сообщество. Такое ощущение, что кругом одни развалины, что все математические концепции внезапно потеряли всякий смысл» [573]. «[Движение Пеано] невозможно представить себе интуитивно; его можно понять лишь с помощью логического анализа» [190]. «Некоторые математические объекты — такие, например, как кривая Пеано — совершенно противоречат здравому смыслу... просто нелепы» [109].

ИСТИННАЯ ПРИРОДА КРИВЫХ ПЕАНО

Я утверждаю, что приведенные цитаты лишь доказывают тот факт, что ни один из тех математиков так и не удосужился тщательно рассмотреть аккуратно построенную кривую Пеано. Кто-нибудь менее добродушный мог бы сказать, что эти цитаты демонстрируют полное отсутствие геометрического воображения.

Я также утверждаю, что после внимательного и непредвзятого изучения и осмысления терагонов Пеано становится весьма затруднительным и дальше не видеть связи между ними и разнообразными природными проявлениями. Эта глава посвящена кривым без самопересечений, т. е. кривым, терагоны которых избегают самокасаний. В главе 13 мы поговорим о кривых с умеренным числом самокасаний. Первыми на предмет устранения самокасаний следует рассмотреть терагоны, заполняющие решетку (например, прямые с целочисленными координатами, параллельные координатным осям).

РЕКИ И ДРЕВОВИДНАЯ СТРУКТУРА ВОДОРАЗДЕЛОВ

Изучая всевозможные терагоны Пеано, я обратил внимание на то, что каждый из них представляет собой некоторую комбинацию из двух

'Плитка, или черепица, по-англ. tile, отсюда термины «тайлинг» (tiling) — покрытие плоскости черепицей — и «пертайлинг» (pertiling). — Прим. перев.

7 о Покорение чудовищных кривых Пеано

91

деревьев (или двух скоплений деревьев), допуская бесконечное разнообразие конкретных интерпретаций. Особенно хорошо эти деревья видны на «прохождении снежинки» — кривой Пеано моего изобретения (см. рис. 105). Глядя на рисунок, мы легко можем представить себе, что там изображено, скажем, скопление кустарников, растущих из нижней трети снежинки Коха и взбирающихся по ее стенкам. Другому эта картинка может показаться похожей на нарисованную плохо очинённым карандашом карту бассейна какой-нибудь большой реки — многочисленные мелкие притоки сливаются в более крупные и в конце концов вливаются в главную реку, протекающую вдоль нижней трети снежинки. Из последней интерпретации немедленно следует, что кривые, отделяющие реки друг от друга, составляют в совокупности древовидный водораздел. Разумеется, реки и водоразделы могут меняться местами.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz