Предыдущая Следующая
[614] ZIMMERMAN, M. H. Hydraulic architecture of some diffuse-porous trees. Canadian J. of Botany. 1978, 56, 2286-2295.
[615] ZIPF, G. K. Human behavior and the principle of least-effort. Cambridge, Ma.: Addison-Wesley, 1967 (репринт издания 1949 года, Hefner).
[616] ZYGMUND, A. Trigonometric series. Cambridge: Cambridge University Press, 1959.
638 Фрактальная геометрия природы
Дополнительная литература
[617] ALEXANDER, S. & ORBACH, R. Density of states on fractals: «fractons». Journal de Physique Lettres. 1982, 43, 625- .
[618] *AGTENBERG, F. R Recent developments in geomathematics. Geo-processing. 1982, 2.
[619] ANDREWS, D. J. A stochastic fault model. I. Static case, II. Time-dependent case. Journal of Geophysical Research. 1980, 85B, 3867-3877 & 1981, 86B, 10821-10834.
[620] *BLEI, R. Combinatorial dimension: a continuous parameter. Symposia Mathematica (Italia), 1983.
[621] BURKS, A. W. (Ed.) Essays on Cellular Automata. Urbana, 111.: University of Illinois Press, 1970.
[622] *BURROUGH, P. A. Fractal dimensions of landscapes and other environmental data. Nature. 1981, 294, 240-242.
[623] *CANNON, J. W. Topological, combinatorial and geometric fractals. The 31st Earle Raymond Hedrick Lectures of the Mathematical Association of America, 1982 (представлено на встрече в Торонто).
[624] CHORIN, A. The evolution of a turbulent vortex. Communication in Mathematical Physics. 1982, 83, 517-535.
[625] CHORIN, A. Numerical estimates of Hausdorff dimension. Journal of Computational Physics. 1982, 46.
[626] *DEKK1NG, F.M. Recurrent sets. Advances in Mathematics. 1982, 44, 78-104.
[627] DOUADY, A. 1983
[628] DOUADY, A. & HUBBARD, J.H. Iteration des polynomes quadratiques complexes. Comptes Rendus (Paris). 1982, 2941, 123-126.
[629] GEFEN, Y, AHARONY, A. & MANDELBROT, B. Phase transitions on fractals: 1. Quasi-linear lattices. Journal of Physics A. 1983.
[630] GEFEN, Y, MEIR, Y, MANDELBROT, B. & AHARONY, A. Geometric implementation of hypercubic lattices with noninteger dimensionality, using low lacunarity fractal lattices. 1983.
[631 ] *GILBERT, W. T. Fractal geometry derived from complex bases. Mathematical Intelligencer. 1982, 4, 78-86. Предыдущая Следующая
|