FRACTALS

¾ äàÐÚâÐÛÐå
³ÐÛÕàÕï Ø×ÞÑàÐÖÕÝØÙ äàÐÚâÐÛÞÒ
¿àÞÓàÐÜÜë ÔÛï ßÞáâàÞÕÝØï äàÐÚâÐÛÞÒ
ÁáëÛÚØ ÝÐ ÔàãÓØÕ áÐÙâë Þ äàÐÚâÐÛÐå
½ÐßØèØ áÒÞØ ÒßÕçÐâÛÕÝØï



 
 

LOGO
Ïðåäûäóùàÿ Ñëåäóþùàÿ

1976.

Ëèòåðàòóðà

637

[598] W1GNER, Å. R The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics. 1960, 13, 1-14. Ñì. òàêæå â [599].

[599] WIGNER, E.R Symmetries and reflections. Indiana University Press. MIT Press Paperback. 1967.

[600] WILLIS, J.C. Age and area. Cambridge: Cambridge University Press, 1922.

[601] WILSON, A. G. Olbers'paradox and cosmology. Los Angeles: Astronomical Society, 1965.

[602] WILSON, A. G. Hierarchical structures in the cosmos. Hierarchical Structures, 113-134. Ed. L. L. Whyte, A.G.Wilson & D.Wilson. New York: American Elsevier, 1969.

[603] WILSON, K. The renormalization group: critical phenomena and the Kondo problem. Reviews of Modern Physics. 1975, 47, 773-840.

[604] WILSON, K. G. Problems in physics with many scales of length. Scientific American. 1979, 241 (àâãóñòîâñêèé âûïóñê), 158-179.

[605] WILSON, J. T. (Ed.) Continents adrift. Readings from Scientific American. San Francisco: W. H. Freeman, 1972.

[606] WILSON, T. A. Design of the bronchial tree. Nature. 1967, 213, 668-669.

[607] WOLF, D. (Ed.) Noise in physical systems, (Bad Neuheim Conference). New York: Springer, 1978.

[608] YAGLOM, A.M. Some classes of random fields in ãà-dimensional space, related to stationary random processes. Theory of Probability and Its Applications. 1957, 2, 273-320. (Ïåðåâîä ñ ðóñ. R. A. Silverman.)

[609] YAGLOM, A. M. The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertia interval. Doklady Akademii Nauk SSSR. 1966, 16, 49-52. (Ïåðåâîä íà àíãëèéñêèé â Soviet Physics Doklady. 1966, 2, 26-29.)

[610] YODER, L. Variation of multiparameter Brownian motion. Pr. of the American Mathematical Society. 1974, 46, 302-309.

[611] YODER, L. The Hausdorff dimensions of the graph and range of A-parameter Brownian motion in d-space. Annals of Probability. 1975, 3, 169-171.

[612] YOUNG, W.H. & YOUNG, G. C. The theory of sets of points. Cambridge: Cambridge University Press, 1906.

[613] YULE, G. UDNY. A mathematical theory of evolution, based on the conclusions of Dr. J.C.Willis, F. R. Philosophical Tr. of the Royal Society (London). 1924, 213 B, 21-78.


Ïðåäûäóùàÿ Ñëåäóþùàÿ


Ãàëåðåÿ ôðàêòàëîâ

 

Hosted by uCoz