FRACTALS

¾ äàÐÚâÐÛÐå
³ÐÛÕàÕï Ø×ÞÑàÐÖÕÝØÙ äàÐÚâÐÛÞÒ
¿àÞÓàÐÜÜë ÔÛï ßÞáâàÞÕÝØï äàÐÚâÐÛÞÒ
ÁáëÛÚØ ÝÐ ÔàãÓØÕ áÐÙâë Þ äàÐÚâÐÛÐå
½ÐßØèØ áÒÞØ ÒßÕçÐâÛÕÝØï



 
 

LOGO
Ïðåäûäóùàÿ Ñëåäóþùàÿ

[420] MCKEAN, H.P, Jr. Sample functions of stable processes. Annals of Mathematics. 1955, 61, 564-579.

[421] MCKEAN, H. P., Jr. Brownian motion with a several dimensional time. Theory of Probability and its Applications. 1963, 8, 357-378.

[422] MCMAHON, T. A. The mechanical design of trees. Scientific American. 1975, 233, 92-102.

[423] MCMAHON, T.A. & KRONAUER, R.E. Tree structures: Deducing the principle of mechanical design. J. of Theoretical Biology. 1976, 59, 433^166.

[424] ÌÅËÀ, J. M., RODRIGUEZ-ITURBE, I. & DAWDY, D.R. Streamfiow simulation. 2. The broken line process as a potential model for hydrological simulation. Water Resource Research. 1972, 8,931-941.

[425] MELZAK, Z. A. Infinite packings of disks. Canadian J. of Mathematics. 1966, 18, 838-852.

[426] MENGER, K. 1932.

628 Ôðàêòàëüíàÿ ãåîìåòðèÿ ïðèðîäû

[427] MENGER, Ê. What is dimension? American Mathematical Monthly. 1943, 50, 2-7. (Ñì. òàêæå [428], ãëàâà 17.)

[428] MENGER, Ê. Selected papers in logic and foundations, didactics and economics. Boston: Reidel, 1979.

[429] MENSCHKOWSKI, H. Probleme des Unendlichen. Braunschweig: Vieweg, 1967.

[430] METROPOLIS, N., STEIN, M.L. & STEIN, PR. On finite limit sets for transformations on the unit interval. J. of Combinatorial Theory. 1973, A15, 25^14.

[431] MINKOWSKI, H. Über die Begriffe Länge. Oberfläche und Volumen. Jahresbericht der Deutschen Mathematikervereinigung. 1901, 9, 115-121. (Ñì. òàêæå â [432], 2, 122-127.)

[432] MINKOWSKI, tt. Gesammelte Abhandlungen. 1911 (Chelsea reprint).

[433] MONIN, A. S. & YAGLOM, A. M. On the laws of small scale turbulent flow of liquids and gases. Russian Mathematical Surveys. 1963, 18, 89-109 (ïåðåâîä ñ ðóññêîãî).

[434] MONIN, A. S. & YAGLOM, A. M. Statistical fluid mechanics, (â 2-õ òîìàõ). Cambridge, Ma.: MIT Press, 1971, 1975 (ïåðåâîä ñ ðóññêîãî).

[435] MOORE, E. H. On certain crinkly curves. Tr. of the American Mathematical Society. 1900, 1, 72-90.

[436] MORI, H. Fractal dimensions of chaotic flows of autonomous dissipative systems. Progress of Theoretical Physics. 1980, 63, 1044-1047.

[437] MORI, H. & FUJISAKA, H. Statistical dynamics of chaotic flows. Progress of Theoretical Physics. 1980, 63, 1931-1944.


Ïðåäûäóùàÿ Ñëåäóþùàÿ


Ãàëåðåÿ ôðàêòàëîâ

 

Hosted by uCoz