FRACTALS

¾ äàÐÚâÐÛÐå
³ÐÛÕàÕï Ø×ÞÑàÐÖÕÝØÙ äàÐÚâÐÛÞÒ
¿àÞÓàÐÜÜë ÔÛï ßÞáâàÞÕÝØï äàÐÚâÐÛÞÒ
ÁáëÛÚØ ÝÐ ÔàãÓØÕ áÐÙâë Þ äàÐÚâÐÛÐå
½ÐßØèØ áÒÞØ ÒßÕçÐâÛÕÝØï



 
 

LOGO
Ïðåäûäóùàÿ Ñëåäóþùàÿ

[404] MANDELBROT, Â. B. & VAN NESS, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Review. 1968, 10, 422.

[405] MANDELBROT, B.B. & WALLIS, J.R. Noah, Joseph and operational hydrology. Water Resources Research. 1968,4,909-918.

[406] MANDELBROT, B.B. & WALLIS, J.R. Computer experiments with fractional Gaussian noises. Water Resources Research. 1969, 5, 228.

Ëèòåðàòóðà

627

[407] MANDELBROT, Â. Â. & WALLIS, J.R. Some long-run properties of geophysical records. Water Resources Research. 1969, 5, 321-340.

[408] MANDELBROT, B.B. & WALLIS, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resources Research. 1969, 5, 967-988.

[409] MANDELBROT, Â. Â., ñì. òàêæå [7], [21], [90], [165], [166], [168] è [253].

[410] MANHE1M, J. H. The genesis of point-set topology. New York: Macmillan, 1964.

[411] MARCUS, A. A stochastic model of the formation and survivance of lunar craters, distribution of diameters of clean craters. Icarus. 1964, 3, 460^172.

[412] MARCUS, M. B. Capacity of level sets of certain stochastic processes. Z. fur Wahrscheinlichkeitstheorie. 1976, 34, 279-284.

[413] MARSTRAND, J. M. Some fundamental geometrical properties of plane sets of fractional dimension. Pr. of the London Mathematical Society. 1954, (3) 4, 257-302.

[414] MARSTRAND, J. M. The dimension of Cartesian product sets. Pr. of the London Mathematical Society. 1954, 50, 198-202.

[415] MATHERON, G. Traité de Géostatistique Appliquée. Cambridge Philosophical Society, Tome 1. Paris: Technip, 1962.

[416] MATTILA, P. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Academiae Scientiarum Fennicae, Series A Mathematica. 1975, I, 227-244.

[417] MAX, N. L. Space filling curves. Topology Films Project. International Film Bureau, Chicago, 111., 1971. (16-ìì ôèëüì. Â êîìïëåêò âõîäèò òàêæå îäíîèìåííàÿ êíèãà (ïðåäâàðèòåëüíûé âàðèàíò), èçäàííàÿ â Education Development Center, Newton, Ma.)

[418] MAXWELL, J. Ñ. Scientific papers, 1890 (Dover reprint).

[419] MCKEAN, H.P., Jr. Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Mathematical J. 1955, 22, 229-234.


Ïðåäûäóùàÿ Ñëåäóþùàÿ


Ãàëåðåÿ ôðàêòàëîâ

 

Hosted by uCoz