Предыдущая Следующая
Однако в данном случае события разворачивались совершенно иначе. Трудно поверить, но Вейерштрасс так и не опубликовал своего открытия, хотя и прочел о нем лекцию в Берлинской академии наук 18 июля 1872 г. Конспект лекции попал-таки в изданное значительно позднее «Собрание сочинений» [588], однако мир узнал об открытии Вейерштрасса только в 1875 г. из статьи Дюбуа-Реймона [115] (там же эти функции были впервые названы именем первооткрывателя). Таким образом, год 1875 является не более чем удобной символической датой для обозначения начала Великого кризиса математики.
Дюбуа-Реймон пишет, что «метафизика этих функций скрывает, по всей видимости, множество загадок, и я не могу избавиться от ощущения, что поиски ответов [на них] приведут нас к границе наших интеллектуальных возможностей». Возникает и другое ощущение: никто, похоже, особенно и не спешил выяснить, где же находятся эти самые границы. Те из современников, кто было подступился к задаче (Гастон Дарбу, например), тут же отступили и ударились в крайний консерватизм, у других же и на это духу не хватило. Кроме того, невольно вспоминается
582
О людях и идеях о XII
другая — значительно более известная — история о Гауссе, скрывающем свое открытие неевклидовой геометрии «из страха перед бунтом бео-тийцев1» (из письма Гаусса к Бесселю от 27 января 1829 г.). (Позднее, однако, Гаусс открылся сыну своего друга Яношу Бойяи — с катастрофическими последствиями для рассудка последнего — после того, как Янош Бойяи опубликовал статью о собственном открытии неевклидовой геометрии, совершенном, разумеется, независимо от Гаусса.) Наконец, на память приходит данный однажды Кантору совет Миттаг-Леффлера, суть которого заключается в том, что не стоит воевать с редакторами, нужно лишь придержать свои наиболее дерзновенные открытия до тех пор, когда мир созреет для них. Можно по пальцам перечесть случаи, когда самые передовые деятели науки с такой необычайной неохотой воспринимали новое, как в этих трех не похожих одна на другую историях.
Помимо Вейерштрасса здесь следует упомянуть еще три имени. Уже давно ходят слухи (зарегистрированные в письменном виде в [443]), что Риман приблизительно в 1861 г. демонстрировал своим студентам функцию R{t) = п~2 cos(n2t), которая являлась, по его словам, непрерывной и недифференцируемой. Мы, однако, не располагаем ни точной формулировкой утверждения Римана, ни его доказательством. Более того, если термин «недифференцируемая» означает «нигде не дифференцируемая», то любое предлагаемое доказательство должно быть ошибочным, поскольку в работах [169] и [528] совершенно недвусмысленно показано, что функция R (t) имеет положительную и конечную производную в определенных точках. Функцией Римана интересовался также и Кронекер, что еще более подчеркивает, насколько занимал этот вопрос умы тогдашних математиков. (Для расширения знаний по истории вопроса рекомендую обратить внимание на [410], [207] и [116, 117, 118, 119].) Предыдущая Следующая
|