Предыдущая Следующая
Лексические проблемы. И снова возникает необходимость в новых терминах. Возьму на себя смелость порекомендовать термин установившийся в качестве а) синонима того, что математики называют «стационарный и такой, что сумма X* (t) сходится к В (£)», и б) термина для обозначения того интуитивного понятия, которое исследователи-практики склонны именовать «стационарностью». Обратное понятие можно обозначить терминами неустановившийся или блуждающий.
В одной из своих ранних работ (а именно: в [373]) я предложил называть установившиеся процессы лапласовыми и мягкими. Последнее слово употреблено в значении «безопасный, легко контролируемый»; это значение показалось мне вполне подходящим, поскольку, имея дело с таким случайным процессом, можно не опасаться каких-либо сюрпризов с его стороны — не стоит ждать от него тех резких отклонений и разнообразных конфигураций, благодаря которым анализ блуждающих случайных процессов представляет собой более сложное, но и гораздо более интересное занятие.
39 о Математическое приложение и дополнения
519
УСТОЙЧИВЫЕ ПО ЛЕВИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
Среди достоинств гиперболического распределения отметим непревзойденную формальную простоту и инвариантность при усечении (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПРИ УСЕЧЕНИИ). Другие преобразования, оставляющие его инвариантным, нас сейчас не интересуют. Гораздо большее значение для нас имеют сейчас распределения, инвариантные при сложении. Гиперболическими они являются лишь асимптотически, а Поль Леви выбрал для них в свое время в качестве названия донельзя перегруженный термин: «устойчивые распределения». Он же ввел и понятие устойчивого процесса, в котором участвуют как гиперболическое, так и устойчивое распределения.
До публикации моих работ устойчивые случайные величины считались явлениями «патологическими» и даже «чудовищными»; единственное исключение составлял случайный вектор Хольтсмарка, о котором мы поговорим в подразделе 9. Я предложил некоторые области приложения устойчивых случайных величин, важнейшие из которых описаны в главах 31, 32 и 37; кроме того, ниже (подраздел 4) упоминается о возможности применения таких величин в генетике. Предыдущая Следующая
|