FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Термин «преобразование» понимается здесь в широком смысле: например, сумма двух независимых реализаций случайной величины X рассматривается как результат преобразования X. Соответствующие величины следует называть масштабно-инвариантными при сложении, но мы будем называть их устойчивыми по Леви (см. главы 31, 32 и 39). В главе 39 (с. 501 и 528), кроме того, упоминаются и случайные величины, масштабно-инвариантные при взвешенном сложении.

Асимптотический скейлинг. Асимптотически гиперболические С. В. К счастью, приведенное выше определение вовсе не является столь неопределенным, как может показаться на первый взгляд. При многих преобразованиях, как выясняется, для инвариантности требуется асимптотически гиперболическое распределение. Это означает, что должен существовать некоторый показатель D > 0, такой, что пределы

lim Pi(U < u)uD и lim ~Pi(U > u)uD определены и конечны, причем один из них положителен.

Распределение Парето. Термин «асимптотически гиперболическое распределение» можно рассматривать как синоним термина, хорошо знакомого статистикам-экономистам, а именно: распределение Парето. Вильфредо Парето — итальянский экономист, который пытался

38 о Масштабная инвариантность и степенные законы

475

перевести законы механического равновесия в термины равновесия экономического, однако более прочно его имя запомнят, вероятнее всего, в связи с открытием им одной фундаментальной статистической закономерности: он обнаружил, что в определенных обществах количество индивидуумов с личным доходом II, превышающим некую большую величину и, распределяется приблизительно гиперболически, т. е. пропорционально и~п. (Несколько позже в этой главе мы еще вернемся к распределению доходов.)

«НОВЫЕ МЕТОДЫ СТАТИСТИЧЕСКОЙ ЭКОНОМИКИ» [342]

Гиперболические законы, аналогичные распределению Парето, были позднее обнаружены во многих отраслях экономики, а на объяснение их столь широкой распространенности потрачены немалые усилия. Однако позвольте мне прежде описать один еретический подход к этой задаче.

В такой области, как экономика, ни в коем случае нельзя забывать о том, что «данные», которыми нам приходится оперировать, представляют собой весьма разнородную смесь. Поэтому распределение данных является результатом совместного действия базового фиксированного «истинного распределения» и в высшей степени изменчивого «фильтра». В [342] я отмечаю, что асимптотически гиперболические распределения с -О < 2 очень «крепки» в этом смысле, т. е. многие самые разнообразные фильтры практически не изменяют их асимптотического поведения. С другой стороны, почти все прочие распределения таким свойством не обладают. Следовательно, гиперболическое истинное распределение можно наблюдать всегда: всевозможные наборы искаженных данных предполагают одно и то же распределение с одинаковым показателем В. При попытке применить тот же подход к большинству других распределений мы получим «хаотические» несовместимые результаты. Иными словами, практической альтернативой асимптотически гиперболическому распределению является не какое-то другое распределение, но хаос. Поскольку хаотические результаты, как правило, не публикуются (а если публикуются, то не замечаются), факт широкой распространенности асимптотически гиперболических распределений не представляет собой ничего неожиданного и мало может сообщить нам об истинной их распространенности в природе.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz