FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

ВЕТВЯЩИЕСЯ СКВИГ-КРИВЫЕ

Вернемся к построению речного русла. Вот мы заменили треугольный интервал долины участком поддолйны, состоящим из одного или трех подтреугольников; представьте теперь, что оставшиеся три (или один) подтреугольника вдруг решают отвести от основного русла собственную поддолйну. Построение нового русла полностью определяется уже известным процессом. Точки, в которых подреки пересекают границы между треугольниками, выбираются с помощью той же системы, что используется в главной реке. В пределе конструкция сходится к древовидной кривой, которая заполняет треугольник случайным образом, как можно видеть на рисунке:

24 о Случайные цепи и сквиг-кривые

321

ОЧЕНЬ КРАТКО ЕЩЕ О ДВУХ ПРЕЦЕДЕНТАХ

Тот факт, что столь грубая модель, как мои линейные сквиг-кривые, может дать результат, вполне сносно — хоть и приблизительно — согласующийся с наблюдаемой размерностью реальных речных русел и бассейнов, представляется мне весьма интересным и даже многозначительным.

С помощью этих кривых можно также найти размерность общепринятой модели для сильно разбавленных растворов линейных полимеров — случайного блуждания без самопересечений (СББС) на решетке (см. главу 36).

Лучшая (чем в случае СББС) приспособленность сквиг-кривых к ограничениям, налагаемым геометрией плоскости, объясняется, очевидно, интерполяционным характером их построения.

Сквиг-поверхности строятся на кубе, разделенном на Ь3 подкубов; я определил соответствующие «освобождающие» процедуры, которые однозначно определяют получаемую в результате фигуру — нечто вроде скомканного шерстяного шарфа постоянной и в то же время уменьшающейся толщины. К сожалению, не представляется возможным привести здесь алгоритм построения, из-за его чрезмерной громоздкости.

Во многих случаях кривую Коха с заранее заданной размерностью £> и без самопересечений можно получить несколькими различными способами, используя при этом одну и ту же общую решетку и одинаковые инициаторы. Кроме того, предположим, что существуют, по крайней мере, два генератора, которые дают одинаковый общий контур фигуры. Теперь можно легко рандомизировать построение, случайным образом выбирая на каждом этапе один из двух упомянутых генераторов. Генераторы могут, например, выглядеть вот так:


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz