Предыдущая Следующая
В ПОИСКАХ НУЖНОЙ СТЕПЕНИ СЛУЧАЙНОЙ ИРРЕГУЛЯРНОСТИ
Может ли случай быть причиной столь высокой степени иррегулярности, какую мы наблюдаем, скажем, в очертаниях береговых линий? Не только может, но и является; более того, во многих случаях степень случайной иррегулярности превосходит всякие разумные пределы. Словом, мы сильно недооцениваем силу случая. Физическая концепция случайности сформирована теориями, в которых случай играет существенную роль лишь на микроскопическом уровне, в то время как на макроскопическом уровне случай теряет всю свою значимость. У нас все будет не так: в масштабно-инвариантных случайных фракталах, о которых пой-
286
Случайность о VII
дет речь, важность случая одинаково велика на всех уровнях, включая и макроскопический.
ПРАГМАТИЧЕСКИЙ ВЗГЛЯД НА СЛУЧАЙНОСТЬ
Взаимоотношения между статистической непредсказуемостью и детерминизмом ставят перед исследователем множество захватывающих вопросов, однако в рамках настоящего эссе мы о них говорить не будем. Вместо этого мы вспомним о первоначальном значении английского словосочетания «at random»1, восходящем к временам средневековья, когда упомянутое словосочетание пришло в английский язык из французского. Поговаривают, что фраза «un cheval à randon»2 никак не связана ни с математической аксиоматикой, ни с лошадиной психологией, а означает всего лишь иррегулярное движение, направление которого всадник не в состоянии предсказать.
Таким образом, несмотря на то, что случайность продолжает вызывать в людях всевозможные квазиметафизические порывы, в данном эссе нас мало заботит (позаимствуем цитату из Эйнштейна), «играет ли Господь Бог с нами в кости». Теория вероятности — единственный доступный нам математический инструмент, с помощью которого мы можем составить хоть какую-нибудь карту непознанного и неуправляемого. К нашему счастью, инструмент этот чрезвычайно мощен и удобен, хотя порой и норовист.
ОТ РЕКУРСИВНОСТИ К СЛУЧАЙНОСТИ
Кроме того, теория вероятности отлично сочетается с рекурсивными методами, преобладающими в этом эссе. Иными словами, вторая половина эссе следует за первой без нарушения непрерывности. Мы и далее будем фокусировать наше внимание на прецедентах, обладающих следующей особенностью: и их математическое определение, и графический алгоритм допускают запись в виде некоторой «обрабатывающей программы», содержащей внутреннюю петлю, причем каждый проход этой петли добавляет новые детали к тому, что было получено при предыдущих проходах. Предыдущая Следующая
|