FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

< Смещенное экспериментальное значение £>+ очень близко к <2; на какой-то миг может даже показаться, что это подтверждает теоретические рассуждения [534] и [391], которые ошибочны в том, что объявляют величину <3 размерностью. Мое внимание на эту ошибку обратил С. Киркпатрик. Еще одну, более раннюю, отличную от вышеприведенной, но также ошибочную оценку Е можно найти в статье [293]. ►

КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ

Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопуб-

190

Масштабно-инвариантные фракталы о IV

ликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ (£> ~ 1, 6); гораздо слабее выражена изрезанность широколиственных и смешанных лесов: размерность £> их границ приближается к 1. Мои информаторы отмечают наличие впечатляющего разнообразия масштабов как при личном наблюдении, так и при изучении карт растительности. Имеется, кстати, и внутренний порог, равный приблизительно 40 акрам, — возможно, следствие особенностей аэрофотосъемки.

14 о ВЕТВЛЕНИЕ И ФРАКТАЛЬНЫЕ РЕШЕТКИ

В главе 6 мы рассматриваем плоские кривые Коха с размерностью £> < 2, которые не содержат двойных точек, благодаря чему их можно назвать лишенными самопересечений или неразветвленными. А глава 7 посвящена кривым Пеано, неизбежным пределом для которых являются повсюду плотные двойные точки. В настоящей главе мы намерены сделать следующий шаг и исследовать некоторые примеры намеренно разветвленных самоподобных фигур: плоских кривых (1 < £> < 2), пространственных кривых (1 < £> < 3) и поверхностей (2 < £> < 3). Количество двойных точек в разветвленной самоподобной кривой стремится к бесконечности.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz