FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

186

Масштабно-инвариантные фракталы о IV

Гипотеза о фрактальных кластерах. Вполне естественно предположить, что масштабная инвариантность — свойство не только аналитическое, но распространяется и на геометрию кластеров. Однако эту идею нельзя осмыслить средствами стандартной геометрии, поскольку кластеры отнюдь не являются прямыми линиями. Фрактальная же геометрия, можно сказать, просто создана для устранения таких трудностей: как следствие, я высказал предположение, что кластеры можно представить в виде фрактальных <т-кривых, удовлетворяющих равенствам I? = 2 и 1 < £>с < £>. Это предположение было принято и оказалось весьма плодотворным. Подробнее мы рассмотрим его в главе 36.

< Строго говоря, масштабно-инвариантные фракталы были призваны представлять только те кластеры, которые не усечены границей исходной решетки. Это исключает из рассмотрения сам перколяционный кластер. (Термин кластер обладает чудесным даром создавать путаницу, вы не находите?) Для объяснения возникающего осложнения представим себе чрезвычайно большую решетку, выберем на ней какой-нибудь кластер и квадрат меньшего размера, наложенный на этот кластер. По определению, пресечение кластера и квадрата включает в себя меньший перколяционный кластер, однако оно же включает в себя и «остаток», который соединяется с меньшим перколяционным кластером посредством связей, находящихся вне квадрата. Заметим, что пренебрежение этим остатком смещает вниз оценку £>с. ►

Неслучайные фрактальные модели — очень приближенные, но конкретные. Для того, чтобы утверждение о фрактальной природе какого-либо естественного феномена было обоснованным, его следует сопроводить описанием конкретного фрактального множества, которое могло бы послужить моделью этого явления в первом приближении или хотя бы дать нам возможность представить его перед мысленным взором. Моя модель береговых линий, основанная на кривых Коха, или модель галактических скоплений Фурнье показывают, что такое приближенное неслучайное представление может оказаться весьма полезным. Я полагаю также, что рекурсивно построенные контактные кластеры (подобные тем, что рассматриваются в этой главе) могут снабдить нас полезными фрактальными моделями слабо изученного естественного феномена, который обычно моделируется кластерами Бернулли.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz