Предыдущая Следующая
190
Глава 3. Физика космоса
вяэывая при этом весьма жестоко и бесконтрольно свои конформистские позиции в виде мистицизма н механицизма.
Изучение структуры пространства помогло понять природу электромагнитного поля движущихся электронов н возникающую при таком процессе поляризацию структуры пространства. Электрон, начав двигаться в пространстве, локально взаимодействует с окружающей его структурой, состоящей из противоположно заряженных частиц, образует сложное движение, которое можно описать, просто складывая заряды взаимодействующих частиц. Под влиянием электрона происходит поляризация структуры пространства, которую можно представить как процесс образования уединенных воли, получивших название солитонов, несущих в данном случае заряд частицы. Этот процесс поляризации похож на явление электрической проводимости (см. п. 4.1). Поляризуясь и возвращаясь затем в исходное состояние, элементарные заряды тонкой структуры, расположенные вдоль траектории солитона, испускают электромагнитные волны. Если скорость образованного солитона меньше скорости распространения света в пространстве, то электромагнитное поле будет обгонять солитон, а тонкая структура успеет поляризоваться впереди солитона. Поляризация структуры пространства перед соли-тоном и за ним противоположна по направлению, и излучения противоположно поляризованных элементарных частичек, складываясь, «гасят» друг друга. Однако, когда скорость солитона нз-за влияния электрона приближается к световой, частицы структуры, до которых не долетел солитон, не успевают поляризоваться, н происходит возбуждение структуры и появление кванта, который приводит к уменьшению электрического и магнитного полей электрона. Такой результат находится в полном согласии с экспериментом.
Необходимо упомянуть: как электрическое поле, так н магнитное поле движущегося электрона определяются
3.3. Структура пространства
191
его зарядом, ибо известно, что даже прн скоростях заряженных частиц, очень близких к скорости света, поправка к значению заряда, связанная с его движением даже если она н существовала, ничтожна. Это указывает, что закон сохранения электрического заряда является точным законом природы. Это весьма важно для новой физики, ибо фундаментом природы является электрический заряд, но не масса. Экспериментальным доказательством закона сохранения электрического заряда в физике элементарных частиц является, например, отсутствие в природе распада электрона на нейтрино н фотон. Если бы закон сохранения заряда не выполнялся, то этот процесс обязательно существовал бы, так как всеми остальными законами сохранения он разрешен. Однако специальные опыты, длившиеся в течение нескольких месяцев наблюдения за электронами атомов йода в кристалле Иа^ показали, что такого распада не происходит. Таким образом экспериментально подтверждено положение, в соответствии с которым закон сохранения электрического заряда является точным законом природы. Предыдущая Следующая
|