FRACTALS

¾ äàÐÚâÐÛÐå
³ÐÛÕàÕï Ø×ÞÑàÐÖÕÝØÙ äàÐÚâÐÛÞÒ
¿àÞÓàÐÜÜë ÔÛï ßÞáâàÞÕÝØï äàÐÚâÐÛÞÒ
ÁáëÛÚØ ÝÐ ÔàãÓØÕ áÐÙâë Þ äàÐÚâÐÛÐå
½ÐßØèØ áÒÞØ ÒßÕçÐâÛÕÝØï



 
 

LOGO
Ïðåäûäóùàÿ Ñëåäóþùàÿ

[548] SUZUKI, M. Extension of the concept of dimension — phase transitions and fractals. Suri Kagaku (Mathematical Sciences). 1981, 221, 13-20.

[549] SWIFT, J. On Poetry, a Rhapsody (1733).

[550] TAQQU, M.S. Note on evaluation of R/S for fractional noises and geophysical records. Water Resources Research. 1970, 6, 349-350.

[551] TAQQU, M. S. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. für Wahrscheinlichkeitstheorie. 1975, 31, 287-302.

[552] TAQQU, M. S. Law of the iterated logarithm for sums of nonlinear functions of the Gaussian variables that exhibit a long range dependence. Z. für Wahrscheinlichkeitstheorie. 1977, 40, 203-238.

[553] TAQQU, M. S. A representation for self-similar processes. Stochastic Processes and their Applications. 1978, 7, 55-64.

[554] TAQQU, M. S. Convergence of integrated processes of arbitrary Hermite rank. Z. für Wahrscheinlichkeitstheorie. 1979, 50, 53-83.

[555] TAQQU, M. S. Self-similar processes and related ultraviolet and infrared catastrophes. Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory. Amsterdam: North Holland, 1979.

[556] TAYLOR, G. I. Statistical theory of turbulence; parts I to IV. Pr. of the Royal Society of London. 1935, A151, 421-478. Ðåïðèíò â [155], ñ. 18-51.

[557] TAYLOR, G. I. Some early ideas about turbulence. J. of Fluid Mechanics. 1970, 41, 3-11.

Ëèòåðàòóðà

635

[558] TAYLOR, S.J. The a-dimensional measure of the graph and the set of zeros of a Brownian path. Pr. of the Cambridge Philosophical Society. 1955, 51, 265-274.

[559] TAYLOR, S. J. On the connection between Hausdorff measures and generalized capacities. Pr. of the Cambridge Philosophical Society. 1961, 57, 524-531.

[560] TAYLOR, S. J. The exact Hausdorff measure of the sample path for planar Brownian motion. Pr. of the Cambridge Philosophical Society. 1964, 60, 253-258.

[561] TAYLOR, S.J. Multiple points for the sample paths of the symmetric stable process. Z. fur Wahrscheinlichkeitstheorie. 1966, 5, 247-264.

[562] TAYLOR, S. J. Sample path properties of a transient stable process. J. of Mathematics and Mechanics. 1967, 16, 1229-1246.


Ïðåäûäóùàÿ Ñëåäóþùàÿ


Ãàëåðåÿ ôðàêòàëîâ

 

Hosted by uCoz