FRACTALS

¾ äàÐÚâÐÛÐå
³ÐÛÕàÕï Ø×ÞÑàÐÖÕÝØÙ äàÐÚâÐÛÞÒ
¿àÞÓàÐÜÜë ÔÛï ßÞáâàÞÕÝØï äàÐÚâÐÛÞÒ
ÁáëÛÚØ ÝÐ ÔàãÓØÕ áÐÙâë Þ äàÐÚâÐÛÐå
½ÐßØèØ áÒÞØ ÒßÕçÐâÛÕÝØï



 
 

LOGO
Ïðåäûäóùàÿ Ñëåäóþùàÿ

[154] FRICKE, R. & KLEIN, F. Vorlesungen über die Theorie der automorphen Functionen. Leipzig: Teubner, 1897.

[155] FRIEDLANDER, S.K. & TOPPER, L. Turbulence: classic papers on Statistical theory. New York: Interscience, 1961.

[156] FRIEDMAN, J.B. The architect's compass in creation miniatures of the later middle ages. Traditio, Studies in Ancient and Medieval History, Thought, and Religion. 1974, À²9-Ë29.

[157] FRISCH, U., NELKIN, M. & SULEM, P. L. 1978.

[158] FROSTMAN, O. Potentiel d'équilibre et capacité des ensembles avec quelques applications â la théorie des fonctions. Meddelanden fran Lunds Universitets Mathematiska Seminarium. 1935, 3, 1-118.

[159] FUJISAKA, H. & MORI, H. A maximum principle for determining the intermittency exponent è of fully developed steady turbulence. Progress of Theoretical Physics. 1979, 62, 54-60.

[160] GAMOW, G. Modern cosmology. Scientific American. 1954, 190 (ìàðòîâñêèé âûïóñê), 54-63. (Ñì. òàêæå [438], 390^104.)

[161] GANGOLLI, R. Levy's Brownian motion of several parameters. Annales de l'Institut Henri Poincaré. 1967, 3B, 121-226.

[162] GARDNER, M. An array of problems that can be solved with elementary mathematical techniques. Scientific American. 1967, 216 (âûïóñêè çà ìàðò, àïðåëü è èþíü). (Ñì. òàêæå [164], 207-209 & 215-220.)

[163] GARDNER, M. In which «monster» curves force redefinition of the word

«curve». Scientific American. 1976, 235 (âûïóñê çà äåêàáðü), 124-133. [164] GARDNER, M. Mathematical magic show. New York: Knopf, 1977.

[165] GEFEN, Y., MANDELBROT, Â. B. & AHARONY, A. Critical phenomena on fractals. Physical Review Letters. 1980, 45, 855-858.

[166] GEFEN, Y, AHARONY, A., MANDELBROT, B.B. & KIRKPATRICK, S. Solvable fractal family, and its possible relation to the backbone at percolation. Physical Review Letters. 1981,47, 1771-1774.

[167] GELBAUM, B.R. & OLMSTED, J.M.H. Counterexamples in analysis. San Francisco: Holden-Day, 1964.

[168] GERNSTEIN, G.L. & MANDELBROT, B.B. Random walk models for the spike activity of a single neuron. The Biophysical J. 1964, 4, 41-68.


Ïðåäûäóùàÿ Ñëåäóþùàÿ


Ãàëåðåÿ ôðàêòàëîâ

 

Hosted by uCoz