FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

В биологических химер никто больше не верит, однако в данном случае это неважно. В математике идея Аристотеля находит приложение в интерполяции последовательности целых чисел отношениями целых чисел и далее — пределами отношений целых чисел. При таком подходе любой феномен, определяемый последовательностью целых чисел, является кандидатом на интерполяцию. Таким образом, к столь ранним

41 о Исторические очерки

563

рассуждениям о дробных дифференциалах Лейбница подтолкнула идея, составляющая суть его научного мировоззрения (и лежащая в основе его круговой упаковки, см. главу 18).

А что же Кантор, Пеано, Кох и Хаусдорф? Разве первые трое, создавая свои «чудовищные» множества, не занимались, по сути, воплощением в действительность математических химер? И разве не следует нам рассматривать хаусдорфову размерность как шкалу для упорядочения этих самых химер? Сегодня математики не читают Лейбница и Канта, но в 1900 г. они это делали. Можно представить себе, например, как Хельге фон Кох, прочтя стихотворение Джонатана Свифта, приведенное в предыдущей главе, в разделе о Ричардсоне, строит свою снежинку таким приблизительно манером. Исходный треугольник, изображенный на рис. 70, он определяет как «большую блоху». Затем точно посередине каждого бока большой блохи помещает меньшую треугольную блоху; затем рассаживает еще меньших треугольных блох где только можно на спинах старых или новых блох. И продолжает эту процедуру, «как говорят, ad infinitum». Я не знаю, насколько нарисованная мною картина близка к действительности, она лишь иллюстрирует мою мысль. Кох не мог не впитать современных ему культурных течений, у истоков которых стоял не кто иной, как Лейбниц. А в пародии на Свифта находят свое отражение некоторые популярные толкования принципа Лейбница.

Теперь оставим математиков, занятых искусством ради искусства (и убежденных, говоря словами Кантора, в том, что «суть математики есть свобода»), и перейдем к людям, которые воспевают Природу, пытаясь ей подражать.

Уж они-то о химерах не мечтают, скажете вы — и будете не правы. Многие из них именно этим и занимаются. В главе 10 мы говорили о практических исследователях турбулентности, ломающих себе головы в попытке решить, концентрируется изучаемый ими процесс на «фасоли», на «спагетти» или на «салате», раздраженных тем, что ответ на вопрос зависит от способа задания вопроса, и под конец требующих каких-то «промежуточных» форм, природа которых объединяет в себе свойства линий и поверхностей. В главе 34 упоминается о другой группе искателей «промежуточного», обретающихся среди исследователей галактических скоплений; этим ученым приходится описывать текстуру определенных фигур как «потокообразную», хотя упомянутые фигуры совершенно явно состоят из отдельных точек. Не будет ли уместным открыть этим трезвомыслящим искателям, искренне полагающим, что старинные письмена и древнегреческие кошмары не имеют к ним никакого отношения, глаза на то, что ступают они по проторенной дорожке, ведущей к химерам?


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz