Предыдущая Следующая
В остальном же влияние Ципфа вряд ли окажется сколько-нибудь значительным. Его пример может служить наглядной — если не карикатурной — демонстрацией тех чрезвычайно сложных проблем, которые неизбежно сопутствуют всякой попытке междисциплинарного подхода в науке. ■
Я искренне надеюсь, дорогой читатель, что ты задашь еще мною вопросов на мои ответы.
Этот рисунок,
датированный
30 января 1964 года,
публикуется
с любезного разрешения мсье Жана Эффепя.
 41 о ИСТОРИЧЕСКИЕ ОЧЕРКИ
«Завершив строительство здания, следует убрать леса». Это изречение Гаусса часто приводят себе в оправдание те математики, которые избегают рассказывать о причинах, побуждающих их заниматься теми или иными исследованиями, и забывают об истории своей области. К счастью, в последнее время набирает силу иная тенденция, и многочисленные отступления в данном эссе служат красноречивым показателем того, какой из двух сочувствую лично я. Как бы то ни было, у меня осталось несколько историй, которые слишком велики для отступлений, но могут оказаться занятными и поучительными. Сюда входят и разрозненные трофеи, собранные мною во время библиотечных набегов, спровоцированных моим нынешним увлечением Лейбницем и Пуанкаре.
АРИСТОТЕЛЬ И ЛЕЙБНИЦ, ВЕЛИКАЯ ЦЕПЬ БЫТИЯ, ХИМЕРЫ И ФРАКТАЛЫ
В серьезных научных работах давно уже не требуется обязательная ссылка на Аристотеля и Лейбница. Однако раздел этот, как ни странно, написан отнюдь не шутки ради. Некоторые фундаментальные понятия теории фракталов можно рассматривать как математическую реализацию тех восходящих еще к Аристотелю и Лейбницу идей, одновременно глубоких и широких, которые пронизывают всю нашу культуру и оказывают воздействие даже на людей, считающих себя невосприимчивыми к философским веяниям.
Первую нить я обнаружил у Бурбаки [49]: идея дробного интегро-дифференцирования, рассмотренного нами в главе 27, пришла Лейбницу в голову вскоре после того, как он разработал свою версию дифференциального исчисления и предложил обозначения (1к Р/(1хк и (с1/с1х)кР. В письме Лейбница де Лопиталю от 30 сентября 1695 года (см. [296], II, XXIV, с. 197 и далее) сказано (в моем вольном переводе) приблизительно следующее: «Похоже, Иоганн Бернулли уже сообщил тебе о том, как я рассказывал ему об одной удивительной аналогии, используя которую, можно сказать, что последовательные дифференциалы образуют в некотором роде геометрическую прогрессию. Можно задаться вопросом, каким же будет дифференциал, обладающий дробным показателем. Оказывается, такой дифференциал можно выразить в виде бесконечного ряда. Этот результат, на первый взгляд, далек от геометрии, которой пока Предыдущая Следующая
|