FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Все ковры, напротив, обладают общим свойством: никакая пара пустот не имеет общей границы. Для разъединения конечного приближения такой фигуры, при рассмотрении которой мы игнорируем пустоты, меньшие е, необходимо удалять целые интервалы. И количество этих интервалов возрастает по мере того, как е —> 0. Уай-берн [592] показал, что все фрактальные кривые, обладающие этим свойством, топологически идентичны (<1 гомеоморфны ►) и характеризуются тем, что никакая их часть не может быть отделена удалением одной точки.

С учетом предыдущих замечаний неудивительно, что конечность ветвления находит столь явные и четко очерченные области применения в тех случаях, когда фрактальная геометрия оказывается призвана подробно определить, в какой пропорции плоская фрактальная кривая сочетает в себе два своих стандартных предела: прямую и плоскость. Обобщая, можно сказать, что знать фрактальную размерность кривой отнюдь не достаточно. Например, при исследовании критических феноменов для моделей Изинга на фрактальной решетке авторами работы [165] было установлено, что наиболее важные результаты (< будь то при нулевой или при положительной температуре ►) непосредственно зависят от конечности величины Д.

202

Масштабно-инвариантные фракталы о IV

Вот и настало время дать объяснение, к которому мы ранее были не готовы. Причина, по которой магистраль кластера в критической бернуллиевой перколяции лучше моделируется салфеткой Серпинского, нежели ковром, проясняется следующим открытием Киркпатрика [265]. Даже в чрезвычайно больших решетках критическую магистраль можно разъединить удалением некоторого, по существу неизменного, малого количества связей (величины порядка 2). Даже принимая во внимание всевозможные отклонения, это открытие представляется мне весьма убедительным свидетельством того, что Д < со.

Существуют два варианта снежинки Коха, которые достигают ветвления без образования петель. Первый — плоская кривая, инициатором которой является квадрат, а генератор выглядит следующим образом:

Как видно из рисунка, получаемая кривая ничуть не похожа на снежинку:

Другой пример — поверхность с нулевым объемом, бесконечной площадью и размерностью, равной 1п6/1п2 = 2,58497. Инициатором служит правильный тетраэдр. К средней четверти каждой грани (т. е. к треугольнику, вершинами которого являются середины ограничивающих грань ребер) приставляется другой тетраэдр, линейные размеры которого уменьшены в два раза. Процедура повторяется с каждой гранью получающегося в результате правильного (асимметричного и невыпуклого) 24-гранника, а затем снова и снова до бесконечности. Начиная со второго этапа построения, добавляемые тетраэдры касаются друг друга гранями без самопересечений. В конце концов они заполняют всю поверхность инициатора. Назовем каждую четверть этой конструкции, выросшую на одной из граней инициатора, пирамидой Коха.


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz