FRACTALS

ѕ даРЪвРЫРе
іРЫХаХп ШЧЮСаРЦХЭШЩ даРЪвРЫЮТ
їаЮУаРЬЬл ФЫп ЯЮбваЮХЭШп даРЪвРЫЮТ
БблЫЪШ ЭР ФагУШХ бРЩвл Ю даРЪвРЫРе
ЅРЯШиШ бТЮШ ТЯХзРвЫХЭШп



 
 

LOGO
Предыдущая Следующая

Может, конечно же, случиться так, что форма границы и начальные скорости окажутся ограничены неким масштабом. Здесь, однако, следует учитывать еще одну возможность — локальное поведение решений может определяться «принципом отсутствия ощущения границы». В этом случае решения должны быть локально безмасштабны.

Исследования Александра Чорина. В 1981 г. Чорин [80] применил к анализу диапазона инерции в полностью установившейся турбулентности метод вихрей, чем весьма серьезно укрепил мои позиции. Чорин установил, что сильно растянутая завихренность собирается в тело уменьшающегося объема, размерность которого D ~ 2, 5 вполне согласуется с выводами, сделанными в главе 10. Поправка к колмого-ровским показателям, В = 0,17 ± 0,03, также согласуется с экспериментальными данными. Из расчетов следует, что решения уравнений Эйлера в трех измерениях становятся несправедливыми при конечном значении времени.

В своей следующей, неопубликованной, работе Чорин подходит еще ближе к экспериментальному значению: 2, 5 < D < 2, 6.

ВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ НАВЬЕ-СТОКСА)

Второе конкретное предположение. Далее я утверждаю, что особенности решений уравнений Навье-Стокса могут быть только фракталами.

Неравенство размерности. На интуитивном уровне мы чувствуем, что решения уравнений Навье - Стокса должны непременно быть более гладкими, а значит — менее особыми, нежели решения уравнений Эйлера. Отсюда возникает следующее предположение: размерность особенностей в случае Эйлера превышает таковую в случае Навье-Стокса. Переход к нулевой вязкости можно, вне всякого сомнения, считать особенностью.

Почти особенности. Заключительное предположение моего общего утверждения касается пиков рассеяния, входящих в понятие перемежаемости: они представляют собой особенности Эйлера, сглаженные вязкостью.

Исследования В. Шеффера. Рассмотрение моих предположений для случая вязких жидкостей было впервые предпринято В. Шеффе-ром; некоторое время назад к нему присоединились и другие исследователи, желающие взглянуть в новом свете на поведение конечного или бесконечного объема жидкости, подчиняющегося уравнениям Навье-


Предыдущая Следующая


Галерея фракталов

 

Hosted by uCoz