Предыдущая Следующая
11 о ФРАКТАЛЬНЫЕ ОСОБЕННОСТИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Эта глава посвящена первому пересечению фрактальной геометрии Природы с основным направлением математической физики. Тема эта представляется мне настолько важной, что заслуживает отдельной главы. Читатели, интересы которых лежат в других областях, могут эту главу спокойно пропустить и двигаться дальше.
РАСКОЛ В ТЕОРИИ ТУРБУЛЕНТНОСТИ
Основным недостатком текущего состояния теоретических исследований турбулентности является то, что они разделены, как минимум, на две не связанные друг с другом области. В одной царит предложенная Колмогоровым в 1941 г. (см. [276]) весьма успешная феноменология (о которой мы подробно поговорим в главе 30). Вторая имеет дело с дифференциальными уравнениями гидродинамики, выведенными для невязких жидкостей Эйлером, а для вязких — Навье (и Стоксом). Эти области никак не соотносятся между собой. Если «объяснить» и «понять» означает «свести к фундаментальным уравнениям», то теория Колмогорова еще не объяснена и не понята. Решать уравнения о движении жидкости она также не помогает.
На первый взгляд может показаться, будто сделанное мною в предыдущей главе утверждение о том, что турбулентное рассеяние является гомогенным не на всем пространстве, а лишь на некотором фрактальном подмножестве, только углубляет пропасть между областями. Но я заявлял и заявляю: это не так. И у меня есть свидетельства в свою защиту.
ВАЖНОСТЬ ОСОБЕННОСТЕЙ
Припомним процедуру, которая позволяет успешно решать уравнения математической физики. Обычно сначала составляется список, который объединяет результаты, полученные решением уравнения при особых условиях, с результатами, предположенными на основании физических наблюдений. Далее, опуская связанные с этими решениями детали, мы составляем список элементарных «особенностей», характерных для рассматриваемой задачи. Начиная с этого этапа, часто бывает возможно
11 о Фрактальные особенности дифференциальных уравнений 157
решать более сложные варианты уравнения в первом приближении посредством идентификации подходящих особенностей и связывания их в требуемую последовательность. Именно так студент-аналитик строит график рациональной функции. Разумеется, стандартные особенности — это стандартные евклидовы множества, т. е. точки, кривые и поверхности. Предыдущая Следующая
|